226k views
2 votes
Show that sum k=1/2n(n+1) from k=1 to n

1 Answer

5 votes
Suppose the value of the sum is
S:


S=\displaystyle\sum_(k=1)^nk

So


S=1+2+3+\cdots+(n-2)+(n-1)+n

but also


S=n+(n-1)+(n-2)+\cdots+3+2+1

That is,


S=\displaystyle\sum_(k=1)^n(n-k+1)

Adding these together, we have


2S=\displaystyle\sum_(k=1)^n(k+n-k+1)=\sum_(k=1)^n(n+1)=(n+1)\sum_(k=1)^n1=n(n+1)

\implies S=\frac{n(n+1)}2
User FreeVice
by
8.3k points