192k views
5 votes
Use stoke's theorem to evaluate∬m(∇×f)⋅ds where m is the hemisphere x^2+y^2+z^2=9, x≥0, with the normal in the direction of the positive x direction, and f=⟨x^5,0,y^1⟩. begin by writing down the "standard" parametrization of ∂m as a function of the angle θ (denoted by "t" in your answer)

User Nyegaard
by
7.6k points

1 Answer

5 votes
By Stokes' theorem,


\displaystyle\int_(\partial\mathcal M)\mathbf f\cdot\mathrm d\mathbf r=\iint_(\mathcal M)\\abla*\mathbf f\cdot\mathrm d\mathbf S

where
\mathcal C is the circular boundary of the hemisphere
\mathcal M in the
y-
z plane. We can parameterize the boundary via the "standard" choice of polar coordinates, setting


\mathbf r(t)=\langle 0,3\cos t,3\sin t\rangle

where
0\le t\le2\pi. Then the line integral is


\displaystyle\int_(\mathcal C)\mathbf f\cdot\mathrm d\mathbf r=\int_(t=0)^(t=2\pi)\mathbf f(x(t),y(t),z(t))\cdot(\mathrm d)/(\mathrm dt)\langle x(t),y(t),z(t)\rangle\,\mathrm dt

=\displaystyle\int_0^(2\pi)\langle0,0,3\cos t\rangle\cdot\langle0,-3\sin t,3\cos t\rangle\,\mathrm dt=9\int_0^(2\pi)\cos^2t\,\mathrm dt=9\pi

We can check this result by evaluating the equivalent surface integral. We have


\\abla*\mathbf f=\langle1,0,0\rangle

and we can parameterize
\mathcal M by


\mathbf s(u,v)=\langle3\cos v,3\cos u\sin v,3\sin u\sin v\rangle

so that


\mathrm d\mathbf S=(\mathbf s_v*\mathbf s_u)\,\mathrm du\,\mathrm dv=\langle9\cos v\sin v,9\cos u\sin^2v,9\sin u\sin^2v\rangle\,\mathrm du\,\mathrm dv

where
0\le v\le\frac\pi2 and
0\le u\le2\pi. Then,


\displaystyle\iint_(\mathcal M)\\abla*\mathbf f\cdot\mathrm d\mathbf S=\int_(v=0)^(v=\pi/2)\int_(u=0)^(u=2\pi)9\cos v\sin v\,\mathrm du\,\mathrm dv=9\pi

as expected.
User Neil Stockton
by
8.0k points