10.8k views
1 vote
Find the extreme values of f(x y)=xy subject to the constraint x^2 + y^2 -4 = 0

User Zenilogix
by
8.1k points

1 Answer

7 votes
Via Lagrange multipliers:


L(x,y,\lambda)=xy+\lambda(x^2+y^2-4)


L_x=y+2\lambda x=0

L_y=x+2\lambda y=0

L_\lambda=x^2+y^2-4=0


yL_x=y^2+2\lambda xy=0

xL_y=x^2+2\lambda xy=0

\implies yL_x-xL_y=y^2-x^2=0\implies y^2=x^2

\implies x^2+y^2=4=2x^2\implies x^2=2\implies x=\pm\sqrt2\implies y=\pm\sqrt2

So we have four critical points to consider,
(\sqrt2,\sqrt2),(-\sqrt2,\sqrt2),(\sqrt2,-\sqrt2),(-\sqrt2,-\sqrt2). If both coordinates are positive or both are negative, we get a maximum value of
(\pm\sqrt2)^2=2; otherwise, we get a minimum of
(-\sqrt2)(\sqrt2)=-2.
User Meules
by
8.0k points

No related questions found