121k views
3 votes
G se the ratio test to determine the convergence or divergence of the series. ∞ n! nn n = 1

User Site
by
8.1k points

1 Answer

1 vote
Reading the series as


\displaystyle\sum_(n\ge1)(n!)/(n^n)

With the summand
a_n=(n!)/(n^n), we have


\left|(a_(n+1))/(a_n)\right|=\left|(((n+1)!)/((n+1)^(n+1)))/((n!)/(n^n))\right|=(n+1)(n^n)/((n+1)^(n+1))=(n^n)/((n+1)^n)=\left(\frac n{n+1}\right)^n

Then


\displaystyle\lim_(n\to\infty)\left(\frac n{n+1}\right)^n=\lim_(n\to\infty)e^{n\ln\frac n{n+1}}=\exp\left(\lim_(n\to\infty)n\ln\frac n{n+1}\right)

This is a pretty standard limit that utilizes L'Hopital's rule. We can write


\displaystyle\lim_(n\to\infty)n\ln\frac n{n+1}=\lim_(n\to\infty)\frac{\ln\frac n{n+1}}{\frac1n}\stackrel{\mathrm{LHR}}=\lim_(n\to\infty)\frac{\frac1{n(n+1)}}{-\frac1{n^2}}=-1

which means


\displaystyle\lim_(n\to\infty)\left(\frac n{n+1}\right)^n=e^(-1)<1

and so the series converges by the ratio test.
User Grochmal
by
7.5k points