138k views
1 vote
How do I set up 37 and 43

How do I set up 37 and 43-example-1
User Ghybs
by
8.2k points

1 Answer

4 votes
37)

keep in mind that the perimeter of a rectangle is length + length + width + width or P = 2l + 2w, or P = 2(l+w).

we know the perimeter of the box's width and length is 36, therefore then


\bf \stackrel{P}{36}=2(\stackrel{length}{l}+\stackrel{width}{w})\implies 18=l+w\implies \boxed{18-w=\stackrel{length}{l}} \\\\\\ V(w)=4(w)(18-w)\implies V(w)=-4w^2+72w

check the first picture below.

now, that parabolic graph, goes up up up reaches a U-turn and the back down, so it has a "maximum" point, and that is when the volume is the highest, namely V(w).


\bf \textit{ vertex of a vertical parabola, using coefficients}\\\\ \begin{array}{lccclll} V(w) = &{{ -4}}w^2&{{ +72}}w&{{ +0}}\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right) \\\\\\ {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\implies \stackrel{maximum~volume}{0-\cfrac{72^2}{4(-4)}}


43)

is pretty much the same thing, checking the vertex coordinates of the parabola, check the second picture below,


\bf h=64t-16t^2\implies h=-16t^2+64t+0\\\\\\ \textit{ vertex of a vertical parabola, using coefficients}\\\\ \begin{array}{lccclll} h = &{{ -16}}t^2&{{ +64}}t&{{ +0}}\\ &\uparrow &\uparrow &\uparrow \\ &a&b&c \end{array}\qquad \left(-\cfrac{{{ b}}}{2{{ a}}}\quad ,\quad {{ c}}-\cfrac{{{ b}}^2}{4{{ a}}}\right) \\\\\\ \stackrel{\textit{it takes this many seconds}}{-\cfrac{64}{2(-16)}}\qquad \qquad \stackrel{\textit{it went up this many feet}}{0-\cfrac{64^2}{4(-16)}}
How do I set up 37 and 43-example-1
How do I set up 37 and 43-example-2
User Matthew Heusser
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories