45.4k views
5 votes
Using a graph, it can be seen that the curves y=x+ln(x)y=x+ln⁡(x) and y=x3−xy=x3−x intersect at the points (0.447141,−0.357742)(0.447141,−0.357742) and (1.507397,1.917782).(1.507397,1.917782). Find the coordinates (to three decimal places) of the centroid for the region bounded by these curves.

1 Answer

3 votes
The area of the region bounded by two curves f(x) and g(x) is with poins of intersection at x = a and x = b is given by:


Area= \int\limits^b_a {\left(f(x)-g(x)\right)} \, dx

Given the curves
y=x+\ln x and
y=x^3-x, the area bounded by the curves is given by:


Area= \int\limits^(1.507397)_(0.447141) {(x+\ln x)-(x^3-x)} \, dx \\ \\ =\int\limits^(1.507397)_(0.447141) {(2x+\ln x-x^3)} \, dx \\ \\ =\left[x^2+x\ln x-x- (1)/(4)x^4 \right]^(1.507397)_(0.447141) \\ \\ =\left[(1.507397)^2+1.507397\ln1.507397-1.507397- (1)/(4) (1.507397)^4\right] \\ -\left[(0.447141)^2+0.447141\ln0.447141-0.447141- (1)/(4) (0.447141)^4\right] \\ \\ =0.092686-(-0.617095)=0.709781\approx\bold{0.710}

The x-cordinate of the centroid of the area bounded by the two curves is given by:


C_x= \frac{\int\limits^(1.507397)_(0.447141) {x\left[(x+\ln x)-(x^3-x)\right]} \, dx}{Area} \\ \\ =\frac{\int\limits^(1.507397)_(0.447141) {\left(2x^2+x\ln x-x^4\right)} \, dx}{0.709781} \\ \\ = (\left[ (2)/(3) x^3+ (1)/(2)x^2\ln x- (1)/(4) x^2- (1)/(5) x^5 \right]^(1.507397)_(0.447141))/(0.709781) \\ \\ = (0.625068-(-0.0744211))/(0.709781) \\ \\ = (0.6994891)/(0.709781) \approx0.985

The y-cordinate of the centroid of the area bounded by the tw.o curves is given by:


C_y= \frac{\int\limits^(1.507397)_(0.447141) {\left[(x+\ln x)^2-(x^3-x)^2\right]} \, dx}{2(Area)} \\ \\ =\frac{\int\limits^(1.507397)_(0.447141) {\left(2x\ln x+(\ln x)^2-x^6+2x^4\right)} \, dx}{2(0.709781)} \\ \\ = (\left[x^2\ln x- (1)/(2) x^2+x(\ln x)^2-2x\ln x+2x- (1)/(7) x^7+ (2)/(5) x^5 \right]^(1.507397)_(0.447141))/(1.419562) \\ \\ = (2.41459-1.64949)/(1.419562) \\ \\ = (0.7651)/(1.419562) \approx0.539

Therefore, the coordinates of the centroid of the area bounded by the given two curves is (0.985, 0.539)
User Henry Marshall
by
8.1k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories