Answer:
3ac(ab + ac + bc) = 3a²bc + 3a²c² + 3abc²
Step-by-step explanation:
The distributive property says that we can multiply 3ac by each term inside the parenthesis, so:
3ac(ab + ac + bc) = 3ac(ab) + 3ac(ac) + 3ac(bc)
Now, a number multiplied by itself is that number squared, so, we can rewrite the expression as:
3ac(ab + ac + bc) = 3aabc + 3aacc + 3abcc
3ac(ab + ac + bc) = 3a²bc + 3a²c² + 3abc²
So, the answer is:
3ac(ab + ac + bc) = 3a²bc + 3a²c² + 3abc²