128k views
3 votes
Simplify parenthesis 1 minus cosine theta parenthesis times parenthesis 1 plus cosine theta parenthesis divided by parenthesis 1 minus sine theta parenthesis times parenthesis 1 plus sine theta parenthesis.

sin2 θ
cos2 θ
tan2 θ
cosine theta over sine theta

User Ayonix
by
8.0k points

2 Answers

2 votes

Answer:

c

Explanation:

User Jazzurro
by
7.7k points
1 vote
The identities used to simplify the expression are the following:

The difference of squares formula,
x^2-y^2=(x-y)(x+y).

The well-known Pythagorean trig. identity,
\sin^2\theta+\cos^2\theta=1, for any angle theta.

Last, the identity
\displaystyle{ (\sin\theta)/(\cos\theta)=\tan\theta.


Thus, from the difference of squares identity we have


\displaystyle{ ((1-\cos\theta)(1+\cos\theta))/((1-\sin\theta)(1+\sin\theta))= (1-\cos^2\theta)/(1-\sin^2\theta).


From the identity
\sin^2\theta+\cos^2\theta=1, we have


\sin^2\theta=1-\cos^2\theta, and
\cos^2\theta=1-\sin^2\theta, thus


\displaystyle{ (1-\cos^2\theta)/(1-\sin^2\theta)= (\sin^2\theta)/(\cos^2\theta)= ((\sin\theta)/(\cos\theta))^2=\tan^2\theta.


Answer:
\tan^2\theta.
User Rudik
by
7.7k points