97.4k views
1 vote
What is the inverse of the function y=3e^(4x+1)

User Golja
by
6.6k points

2 Answers

3 votes
to find the inverse interchange the variables and solve for y


f^-1 (x) = - 1/4 + in(x)/4 - in(3)/4
User Navinrangar
by
7.8k points
4 votes

Answer:

The inverse of the function
y=3e^(4x+1) is
f^(-1)(x) =(\ln \left((x)/(3)\right)-1)/(4)

Explanation:

Given the function
y=3e^(4x+1) we want to find the inverse function,
f^(-1)(x)

  1. First, replace every x with a y and replace every y with an x.
  2. Solve the equation from Step 1 for y.
  3. Replace y with
    f^(-1)(x).

Applying the above process we get:


\mathrm{Interchange\:the\:variables}\:x\:\mathrm{and}\:y\\\\x=3e^(4y+1)\\\\\mathrm{Solve}\:x=3e^(4y+1)\:\mathrm{for}\:y\\\\3e^(4y+1)=x\\\\(3e^(4y+1))/(3)=(x)/(3)\\\\e^(4y+1)=(x)/(3)


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)\\\\\ln \left(e^(4y+1)\right)=\ln \left((x)/(3)\right)\\\\\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)\\\\\left(4y+1\right)\ln \left(e\right)=\ln \left((x)/(3)\right)\\\\4y+1=\ln \left((x)/(3)\right)\\\\y=(\ln \left((x)/(3)\right)-1)/(4)\\\\f^(-1)(x) =(\ln \left((x)/(3)\right)-1)/(4)

The inverse of the function
y=3e^(4x+1) is
f^(-1)(x) =(\ln \left((x)/(3)\right)-1)/(4)

User Latsha
by
8.3k points