97.4k views
1 vote
What is the inverse of the function y=3e^(4x+1)

User Golja
by
7.1k points

2 Answers

3 votes
to find the inverse interchange the variables and solve for y


f^-1 (x) = - 1/4 + in(x)/4 - in(3)/4
User Navinrangar
by
8.4k points
4 votes

Answer:

The inverse of the function
y=3e^(4x+1) is
f^(-1)(x) =(\ln \left((x)/(3)\right)-1)/(4)

Explanation:

Given the function
y=3e^(4x+1) we want to find the inverse function,
f^(-1)(x)

  1. First, replace every x with a y and replace every y with an x.
  2. Solve the equation from Step 1 for y.
  3. Replace y with
    f^(-1)(x).

Applying the above process we get:


\mathrm{Interchange\:the\:variables}\:x\:\mathrm{and}\:y\\\\x=3e^(4y+1)\\\\\mathrm{Solve}\:x=3e^(4y+1)\:\mathrm{for}\:y\\\\3e^(4y+1)=x\\\\(3e^(4y+1))/(3)=(x)/(3)\\\\e^(4y+1)=(x)/(3)


\mathrm{If\:}f\left(x\right)=g\left(x\right)\mathrm{,\:then\:}\ln \left(f\left(x\right)\right)=\ln \left(g\left(x\right)\right)\\\\\ln \left(e^(4y+1)\right)=\ln \left((x)/(3)\right)\\\\\mathrm{Apply\:log\:rule}:\quad \log _a\left(x^b\right)=b\cdot \log _a\left(x\right)\\\\\left(4y+1\right)\ln \left(e\right)=\ln \left((x)/(3)\right)\\\\4y+1=\ln \left((x)/(3)\right)\\\\y=(\ln \left((x)/(3)\right)-1)/(4)\\\\f^(-1)(x) =(\ln \left((x)/(3)\right)-1)/(4)

The inverse of the function
y=3e^(4x+1) is
f^(-1)(x) =(\ln \left((x)/(3)\right)-1)/(4)

User Latsha
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories