135k views
3 votes
Find the exact value of cos pi/12 using half angle identities

User Rudism
by
8.4k points

2 Answers

4 votes

\bf cos\left(\cfrac{{{ \theta}}}{2}\right)=\pm \sqrt{\cfrac{1+cos({{ \theta}})}{2}}\\\\ -------------------------------\\\\ \cfrac{\pi }{12}\cdot 2\implies \cfrac{\pi }{6}\qquad therefore\qquad \cfrac{\quad (\pi )/(6)\quad }{2}\implies \cfrac{\pi }{12}\qquad then \\\\\\ cos\left( (\pi )/(12) \right)\implies cos\left( \cfrac{(\pi )/(6)}{2} \right)=\pm\sqrt{\cfrac{1+cos\left( (\pi )/(6) \right)}{2}}


\bf cos\left( \cfrac{(\pi )/(6)}{2} \right)=\pm\sqrt{\cfrac{1+(√(3))/(2)}{2}}\implies cos\left( \cfrac{(\pi )/(6)}{2} \right)=\pm\sqrt{\cfrac{(2+√(3))/(2)}{2}} \\\\\\ cos\left( \cfrac{(\pi )/(6)}{2} \right)=\pm\sqrt{\cfrac{2+√(3)}{4}}\implies cos\left( \cfrac{(\pi )/(6)}{2} \right)=\pm\cfrac{\sqrt{2+√(3)}}{√(4)} \\\\\\ cos\left( \cfrac{(\pi )/(6)}{2} \right)=\pm\cfrac{\sqrt{2+√(3)}}{2}
User Zags
by
7.9k points
6 votes

Answer:


\cos \left((\pi )/(12)\right)=\frac{\sqrt{2+√(3)}}{2}

Explanation:

To find the exact value of
\cos \left((\pi )/(12)\right) using half angle identities you must:

Write
\cos \left((\pi )/(12)\right) as
\cos \left(((\pi )/(6))/(2)\right)

Using the half angle identity
\cos \left((x)/(2)\right)=\sqrt{(1+\cos \left(x\right))/(2)}


\cos \left(((\pi )/(6))/(2)\right)=\sqrt{(1+\cos \left((\pi )/(6)\right))/(2)}

Use the following identity:
\cos \left((\pi )/(6)\right)=(√(3))/(2)


\sqrt{(1+\cos \left((\pi )/(6)\right))/(2)}=\sqrt{(1+(√(3))/(2))/(2)}

Join
1+(√(3))/(2)


1+(√(3))/(2)=(1\cdot \:2)/(2)+(√(3))/(2)=(2+√(3))/(2)


\sqrt{(1+(√(3))/(2))/(2)}=\sqrt{((2+√(3))/(2))/(2) } =\sqrt{(2+√(3))/(4)} =\frac{\sqrt{2+√(3)}}{√(4)}=\frac{\sqrt{2+√(3)}}{2}

Therefore,


\cos \left((\pi )/(12)\right)=\frac{\sqrt{2+√(3)}}{2}

User Jonathan Crosmer
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories