91.0k views
0 votes
The coordinates of the vertices of quadrilateral RSTU are R(−4, 1) , S(4, −1) , T(3, −6) , and U(−5, −4) . Which statement correctly describes whether quadrilateral RSTU is a rectangle?

2 Answers

6 votes

Answer:

For k12- the answer is Quadrilateral RSTU is not a rectangle because it has no right angles.


Explanation:


User Anazimok
by
7.5k points
5 votes

Solution: A quadrilateral RSTU whose vertices are R(−4, 1) , S(4, −1) , T(3, −6) , and U(−5, −4).

RS =
\sqrt{(4+4)^(2)+(-1-1)^(2)} =√(64+4)= √(68)

ST=
\sqrt{(4-3)^(2)+(-1+6)^(2)}= √(1+25) =√(26)

TU=
\sqrt{(3+5)^(2)+(-6+4)^(2)}= √(64+4)= √(68)

UR =
\sqrt{(-5+4)^(2)+(-4-1)^(2)}= √(1+25) =√(26)

→RS=TU, and ST=UR⇒ Opposite sides are equal.

Slope of RS =
(-1-1)/(4+4) = (-2)/(8)=  (-1)/(4)

Slope of TS=
(-6+1)/(3-4) =(-5)/(-1)=5

Slope of RS × Slope of TS = -1/4 × 5 = -5/4 ≠ -1, So lines are not perpendicular.

∴ quadrilateral RSTU is not a rectangle.

The coordinates of the vertices of quadrilateral RSTU are R(−4, 1) , S(4, −1) , T-example-1
User Vismari
by
7.8k points

No related questions found