57.8k views
2 votes
(1 pt) let x be an exponential random variable with parameter \lambda = 4, and let y be the random variable defined by y = 2 e^x. compute the probability density function of y:

1 Answer

3 votes

Y=2e^X\iff X=\ln\frac Y2

Note that
x\in[0,\infty), so that
y\in[2,\infty).


F_Y(y)=\mathbb P(Y\le y)=\mathbb P(2e^X\le y)=\mathbb P\left(X\le\ln\frac y2\right)=F_X\left(\ln\frac y2\right)


F_X(x)=1-e^(-4x)

\implies F_Y(y)=1-e^(-4\ln\frac y2)=1-(16)/(y^4)


\implies f_Y(y)=(\mathrm dF_Y(y))/(\mathrm dy)=(64)/(y^5)
User VolatileRig
by
7.8k points