52.4k views
0 votes
Find the minimum and maximum values of the function subject to the given constraint. (if an answer does not exist, enter dne.) f(x, y) = x2y + x + y, xy = 5

1 Answer

5 votes
Via Lagrange multipliers:


L(x,y,\lambd)=x^2y+x+y+\lambda(xy-5)

L_x=2xy+1+\lambda y=0

L_y=x^2+1+\lambda x=0

L_\lambda=xy-5=0


\underbrace{10}_(2xy)+1+\lambda y=0\implies \lambda=-\frac{11}y

xy=5\implies y=\frac5x\implies\lambda=-\frac{11}5x


\impliesx^2+1+\left(-\frac{11}5x\right)x=0\implies x^2=\frac56\implies x=\pm√(\frac56)

xy=5\implies y=\pm√(30)

At these points, we get local minima of
f\left(\pm√(\frac56),\pm√(30)\right)=\pm2√(30).

- - -

Another way to do this is to make
f(x,y) a function independent of
y, which is made possible by the constraint.


xy=5\implies y=\frac5x

\implies f(x,y)=f\left(x,\frac5x\right)=F(x)=6x+\frac5x

\implies F'(x)=6-\frac5{x^2}=0\implies x=\pm√(\frac56)

and so on.
User AdamExchange
by
8.4k points