152k views
5 votes
Find the limit. lim θ→0 sin(3θ) θ + tan(4θ)

User Mleykamp
by
7.7k points

1 Answer

4 votes

Answer:


\displaystyle \lim_(\theta \to 0) \sin (3\theta)\theta + \tan (4\theta) = 0

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle

Calculus

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

Step 1: Define

Identify


\displaystyle \lim_(\theta \to 0) \sin (3\theta)\theta + \tan (4\theta)

Step 2: Evaluate

  1. Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(\theta \to 0) \sin (3\theta)\theta + \tan (4\theta) = \sin(0) \cdot 0 + tan(0)
  2. Simplify:
    \displaystyle \lim_(\theta \to 0) \sin (3\theta)\theta + \tan (4\theta) = 0

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Larysa
by
8.4k points