189k views
4 votes
Rewrite 1/x^-3/6 in simplest radical form. show each step of your process

User ThibThib
by
7.5k points

1 Answer

3 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\\\ \textit{also recall that }a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)}\\\\ -------------------------------


\bf \cfrac{1}{x^{-(3)/(6)}}\implies \cfrac{1}{\frac{1}{x^{(3)/(6)}}}\implies \cfrac{(1)/(1)}{\frac{1}{x^{(3)/(6)}}}\implies \cfrac{1}{1}\cdot \cfrac{x^{(3)/(6)}}{1}\implies x^{(3)/(6)}\implies x^{(1)/(2)}\implies \sqrt[2]{x^1} \\\\\\ √(x)
User Itay
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories