29.2k views
3 votes
Factor the expression completely over the complex numbers.

y4−16

2 Answers

5 votes
i'm not sure about this answer but hope it works (y^2+4)(y+2)(y-2)
User Ranny
by
8.5k points
6 votes

\bf \textit{difference of squares} \\ \quad \\ (a-b)(a+b) = a^2-b^2\qquad \qquad a^2-b^2 = (a-b)(a+b) \\\\\\ \textit{and recall that }i^2=-1\\\\ -------------------------------\\\\ y^4-16\implies (y^2)^2-4^2\implies (y^2-4)(y^2+4)\\\\\\ (y^2-2^2)(y^2+4) \implies (y-2)(y+2)(y^2+4)\quad \begin{cases} +4=-(-2^2)\\ \qquad -(-1\cdot 2^2)\\ \qquad -(i^2\cdot 2^2)\\ \qquad -(2^2i^2)\\ \qquad -(2i)^2 \end{cases} \\\\\\ (y-2)(y+2)[y^2-(2i)^2]\implies (y-2)(y+2)[(y-2i)(y+2i)] \\\\\\ (y-2)(y+2)(y-2i)(y+2i)
User Bodruk
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories