96.1k views
5 votes
Find the maximum and minimum values of f(x,y,z)=3x+3y+3zf(x,y,z)=3x+3y+3z on the sphere x2+y2+z2=1x2+y2+z2=1.

User Hirowatari
by
7.9k points

1 Answer

1 vote
Lagrangian:


L(x,y,z,\lambda)=3(x+y+z)+\lambda(x^2+y^2+z^2-1)

Set partial derivative equal to 0 and look for critical points:


L_x=3+2\lambda x=0

L_y=3+2\lambda y=0

L_z=3+2\lambda z=0

L_\lambda=x^2+y^2+z^2-1=0


xL_x+yL_y+zL_z=3(x+y+z)+2\lambda(x^2+y^2+z^2)=0

3(x+y+z)+2\lambda=0

We require
\lambda\\eq0, so we find that


L_x-L_y=2\lambda(x-y)=0\implies x=y

L_y-L_z=2\lambda(y-z)=0\implies y=z

L_x-L_z=2\lambda(x-z)=0\implies x=z


3(3x)+2\lambda=9x+2\lambda=0


\begin{cases}9x+2\lambda=0\\3+2\lambda x=0\end{cases}\implies2\lambda=-9x

\implies 3+(-9x)x=3-9x^2=0\implies x=\pm\frac1{\sqrt3}

which means there are two possible critical points,
\left(\frac1{\sqrt3},\frac1{\sqrt3},\frac1{\sqrt3}\right) and
\left(-\frac1{\sqrt3},-\frac1{\sqrt3},-\frac1{\sqrt3}\right). It's clear enough that the first gives a maximum value of
f\left(\frac1{\sqrt3},\frac1{\sqrt3},\frac1{\sqrt3}\right)=3\sqrt3, and a minimum value of
f\left(-\frac1{\sqrt3},-\frac1{\sqrt3},-\frac1{\sqrt3}\right)=-3\sqrt3.
User Kevin Dark
by
8.1k points