we have the polynomial
x^4-3x^2-4=0
In this problem
we know that the value of x=2 is a zero of the polynomial
because
(2)^4-3(2)^2-4=0
therefore
To find out the other values of x
Divide'
x^4-3x^2-4 : (x-2)
x^3+2x^2+x+2
-x^4+2x^3
-----------------
2x^3-3x^2-4
-2x^3+4x^2
------------------
x^2-4
-x^2+2x
--------------
2x-4
-2x+4
-------------
0
therefore
x^4-3x^2-4=(x-2)( x^3+2x^2+x+2)
Solve the cubic equation
x^3+2x^2+x+2=0
The value of x=-2 is a zero of the cubic function
because
(-2)^3+2(-2)^2+(-2)+2=0
therefore
Divide
x^3+2x^2+x+2 : (x+2)
x^2+1
-x^3-2x^2
----------------------
x+2
-x-2
-------------
0
therefore
x^4-3x^2-4 =(x-2)(x+2)( x^2+1)
Solve the quadratic equation
x^2+1=0
therefore
the answer is
the values of x are
x=2
x=-2
x=i
x=-i