210k views
2 votes
One number is three more than twice another, the sum of the numbers is 12. find the two numbers

User Jorjon
by
8.8k points

1 Answer

3 votes
The numbers are: "3" and "9" .
_______________________________________________________
Step-by-step explanation:
_______________________________________________________
Let "x" represent one of the two (2) numbers.

Let "y" represent the other one of the two (2) numbers.

x = 2y + 3 ;

x + y = 12 .
__________________________
Method 1)
__________________________
x = 12 − y ;

Plug this into "x" for "2y + 3 = x" ;

→ 2y + 3 = 12 − y ;

Add "y" to each side of the equation; & subtract "3" from each side of the equation ;

→ 2y + 3 + y − 3 = 12 − y + y − 3 ;

to get: 3y = 9 ;

Divide each side of the equation by "3" ;
to isolate "y" on one side of the equation; & to solve for "y" ;

3y / 3 = 9 / 3 ;

y = 3 .
____________________________
Now: x = 12 − y ; Plug in "3" for "y" ; to solve for "x" ;

→ x = 12 − 3 = 9
____________________________
So; x = 9, y = 3 .
____________________________
Method 2)
____________________________
When we have:
____________________________
x = 2y + 3 ;

x + y = 12 .
____________________________
→ y = 12 − x ;
_____________________________
Substitute "(12−x)" for "y" in the equation:

" x = 2y + 3 " ;

→ x = 2(12 − x) + 3 ;
_____________________________________
Note the "distributive property of multiplication" :
_____________________________________
a(b + c) = ab + ac ;

a(b − c) = ab − ac ;
_____________________________________
As such:
_____________________________________
→ 2(12 − x) = 2(12) − 2(x) = 24 − 2x ;
_____________________________________
So; rewrite:
_____________________________________
x = 2(12 − x) + 3 ;
as:
_____________________________________
→ x = 24 − 2x + 3 ;

→ x = 27 − 2x ;

Add "2x" to each side of the equation:

→ x + 2x = 27 − 2x + 2x ;

→ 3x = 27 ;

Divide each side of the equation by "3" ;
to isolate "x" on one side of the equation; & to solve for "x" ;

3x / 3 = 27 / 3 ;

x = 9 .
___________________________
Note: "y = 12 − x" ; Substitute "9" for "x" ; to solve for "y" ;

→ y = 12 − 9 = 3 ;

→ y = 3 .
__________________________
So, x = 9 ; and y = 3.
____________________________
The numbers are: "3" and "9" .
_____________________________
To check our answers:
Let us plug these numbers into the original equations;
to see if the equations hold true ; (i.e. when, "x = 9" ; and "y = 3"
_____________________________
→ x + y = 12 ;

→ 9 + 3 =? 12 ? Yes!
_____________________________

→ x = 2y + 3 ;

→ 9 =? 2(3) + 3 ?? ;

→ 9 =? 6 + 3 ? Yes!!
_____________________________

User Alexander Gorelik
by
7.8k points