155k views
1 vote
How does the graph of y=-(2x+6)^2+3 compare to the graph of the parent function?

User Mweerden
by
7.5k points

1 Answer

0 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ % left side templates \begin{array}{llll} f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}\\\\ --------------------


\bf \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the x-axis} \\\\ \bullet \textit{ flips it sideways if }{{ B}}\textit{ is negative}\\ \left. \qquad \right. \textit{reflection over the y-axis}


\bf \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \left. \qquad \right. if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \bullet \textit{ vertical shift by }{{ D}}\\ \left. \qquad \right. if\ {{ D}}\textit{ is negative, downwards}\\\\ \left. \qquad \right. if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}}

now, with that template in mind, let's see,


\bf y=\stackrel{parent~function}{x^2}\implies y=\stackrel{A}{1}(\stackrel{B}{1}x\stackrel{C}{+0})^2\stackrel{D}{+0} \\\\\\ y=\stackrel{A}{-1}(\stackrel{B}{2}x\stackrel{C}{+6})^2\stackrel{D}{+3}\quad \begin{cases} A=-1&\textit{reflection over x-axis}\\ B=2\\ C=6&\textit{horizontal shift of }(C)/(B)\to (6)/(2)\to 3\\ &\textit{to the left}\\ D=3&\textit{vertical shift upwards of 3 units} \end{cases}
User Bostjan
by
7.7k points