Final answer:
To find the area of the surface above the given rectangle, we need to determine the intersection of the cylinder with the plane of the rectangle. The surface area above the rectangle is equal to the area of the rectangle multiplied by the range of the z-coordinate.
Step-by-step explanation:
To find the area of the surface that lies above the given rectangle, we need to determine the intersection of the cylinder with the plane of the rectangle. The equation of the cylinder is y^2+z^2=9, and the vertices of the rectangle are (0,0), (4,0), (0,2), and (4,2). At the x=0 and x=4 cross sections, we can see that the y-coordinate ranges from 0 to 2 and the z-coordinate ranges from -3 to 3. Therefore, the surface area above the rectangle is equal to the area of the rectangle multiplied by the range of the z-coordinate.
The area of the rectangle is (4-0)(2-0) = 8 square units. The range of the z-coordinate is -3 to 3, so the surface area above the rectangle is 8 * (3 - (-3)) = 48 square units.