199k views
4 votes
which of the fallowing functions has a slope 3/2 and contains the midpoint segment between (6, 3) and (-2, 11)?

which of the fallowing functions has a slope 3/2 and contains the midpoint segment-example-1
User Frank Eno
by
9.3k points

1 Answer

3 votes
well, we know the slope is 3/2, what's the midpoint of those anyway?


\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 6}}\quad ,&{{ 3}})\quad % (c,d) &({{ -2}}\quad ,&{{ 11}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right) \\\\\\ \left( \cfrac{-2+6}{2}~~,~~\cfrac{11+3}{2} \right)\implies (2,7)

so, what's the equation of a line whose slope is 3/2 and runs through 2,7?


\bf \begin{array}{lllll} &x_1&y_1\\ % (a,b) &({{ 2}}\quad ,&{{ 7}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{3}{2} \\\\\\ % point-slope intercept \stackrel{\textit{point-slope form}}{y-{{ y_1}}={{ m}}(x-{{ x_1}})}\implies y-7=\cfrac{3}{2}(x-2) \\\\\\ y-7=\cfrac{3}{2}x-3\implies y=\cfrac{3}{2}x+4
User Mpssantos
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories