348,766 views
29 votes
29 votes
What is the form of the Two Squares identity?+O A. (2 + b)(c2 + ) = (ac- boy? +(ad + bc)?B. (22 - 6?)(c + 2) = (ac- borje - (ad + bc)?c. (82 +62)(c2 - 02) - (ac+ bc)? - (ad + bc)?D. (22 +62)(c2 + 2) - (2b-cdj ° + (ac + bc)

What is the form of the Two Squares identity?+O A. (2 + b)(c2 + ) = (ac- boy? +(ad-example-1
User Jorn Van Dijk
by
2.5k points

1 Answer

29 votes
29 votes

For this exercise, let's check every option given in the picture:

Option A

Given:


(a^2+b^2)(c^2+d^2)

Simplify it by solving the multiplication:


\begin{gathered} =(a^2)(c^2)+(a^2)(d^2)+(b^2)(c^2)+(b^2)(d^2) \\ =a^2c^2+a^2d^2+b^2c^2+b^2d^2 \end{gathered}

Notice that the expression given in the exercise as the product is:


(ac-bd)^2+(ad+bc)^2

Îf you simplify it, you get:


\begin{gathered} =(ac)^2-2(ac)(bd)+(bd)^2+(ad)^2+2(ad)(bc)+(bc)^2 \\ =a^2c^2+b^2d^2+a^2d^2+b^2c^2 \end{gathered}

Therefore:


(a^2+b^2)(c^2+d^2)=(ac-bd)^2+(ad+bc)^2

Option B

Apply the same steps used in Option A. Then:


(a^2-b^2)(c^2+d^2)=a^2c^2+a^2d^2-b^2c^2-b^2d^2

Simplify the result given in the exercise :


\begin{gathered} (ac-bd)^2-(ad+bc)^2=(ac)^2-2(ac)(bd)+(bd)^2-((ad)^2+2(ad)(bc)+(bc)^2) \\ =a^2c^2-a^2d^2-4abcd-b^2c^2+b^2d^2 \\ \end{gathered}

Compare it with the one found above:


a^2c^2+a^2d^2-b^2c^2-b^2d^2\\e a^2c^2-2(ac)(bd)+b^2d^2-a^2d^2-2(ad)(bc)-b^2c^2

Option C

Applying the same procedure, you get:


(a^2+b^2)(c^2-d^2)=a^2c^2-a^2d^2+b^2c^2-b^2d^2

Simplify the result shown in the picture:


(ac+bd)^2-(ad+bc)^2=a^2c^2+2(ac)(bd)+b^2d^2-a^2d^2-2(ad)(bc)-b^2c^2

Notice that:


a^2c^2-a^2d^2+b^2c^2-b^2d^2\\e a^2c^2+2(ac)(bd)+b^2d^2-a^2d^2-2(ad)(bc)-b^2c^2

Option D

You already know that:


(a^2+b^2)(c^2+d^2)=a^2c^2+a^2d^2+b^2c^2+b^2d^2

Simplify the result given in the exercise:


(ab-cd)^2+(ac+bd)^2=a^2b^2+a^2c^2+b^2d^2+c^2d^2

Then:


(a^2+b^2)(c^2+d^2)\\e(ab-cd)^2+(ac+bd)^2

The answer is: OptionA.

User Invisible Squirrel
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.