Answer:

General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/s293bflxm18bvcg1l3en3cuunq0lisacx0.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2018/formulas/mathematics/high-school/44u8gzhn9ta01w8xtfd21jo1ablmtfakai.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/7yhe7a7935zygn67ltma0pqtm7b19c7cix.png)
Step-by-step explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Logarithmic Integration [Derivative Rule - Chain Rule]:
![\displaystyle y' = (1)/(2x - 3) \cdot (d)/(dx)[2x - 3]](https://img.qammunity.org/2018/formulas/geography/middle-school/8wkkzz20iqhuogwk6zoc9e782x3vzda8qp.png)
- Basic Power Rule [Addition/Subtraction, Multiplied Constant]:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation