Final answer:
The value of d that makes the lines 2dx - y = -4 and 4x - y = -6 perpendicular is -1/8, as this value makes the product of their slopes equal to -1.
Step-by-step explanation:
To determine which value(s) of d would make the two lines perpendicular, we have to evaluate the slopes of the two lines and set their product to be -1, since perpendicular lines have slopes that are negative reciprocals of each other. Rearranging the first equation, 2dx - y = -4, we get y = 2dx + 4, which has a slope of 2d. For the second equation, 4x - y = -6, rearranging gives y = 4x + 6, with a slope of 4.
The product of the slopes of two perpendicular lines should be -1, so:
(2d) * 4 = -1
Solving for d: d = -1/8.
Thus, when the value of d is -1/8, the two lines are perpendicular.