109k views
3 votes
What is the perimeter of the triangle shown on the coordinate plane, to the nearest tenth of a unit? 20.6 units 22.7 units 25.6 units 27.6 units

What is the perimeter of the triangle shown on the coordinate plane, to the nearest-example-1
User Dbcb
by
8.2k points

1 Answer

3 votes

we know that

the perimeter of a polygon is the sum of the length sides

in this problem we have a triangle

so

the polygon has three sides

Let


A(-5,4)\\B(1,4)\\C(3,-4)

the perimeter is equal to


P=AB+BC+AC

The formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

Step 1

Find the distance AB


A(-5,4)\\B(1,4)

substitutes the values in the formula


d=\sqrt{(4-4)^(2)+(1+5)^(2)}


d=\sqrt{(0)^(2)+(6)^(2)}


dAB=6\ units

Step 2

Find the distance BC


B(1,4)\\C(3,-4)

substitutes the values in the formula


d=\sqrt{(-4-4)^(2)+(3-1)^(2)}


d=\sqrt{(-8)^(2)+(2)^(2)}


d=√(68)


dBC=8.25\ units

Step 3

Find the distance AC


A(-5,4)\\C(3,-4)

substitutes the values in the formula


d=\sqrt{(-4-4)^(2)+(3+5)^(2)}


d=\sqrt{(-8)^(2)+(8)^(2)}


d=√(128)


dAC=11.31\ units

Step 4

Find the perimeter

the perimeter is equal to


P=AB+BC+AC

substitutes the values


P=6+8.25+11.31=25.56\ units=25.6\ units

therefore

the answer is


25.6\ units

User Trixie
by
7.7k points

No related questions found