216k views
4 votes
Find the average value of the function σ(x, y) = x + y + x2 + y2 over the disk 0 ≤ x2 + y2 ≤ 4.

1 Answer

4 votes
The average value of
\sigma(x,y) over the disk (call it
D) is given by


(\displaystyle\iint_D\sigma(x,y)\,\mathrm dA)/(\iint_D\mathrm dA)

The denominator is just the area of
D, which we know to be


\displaystyle\iint_D\mathrm dA=\pi(2)^2=4\pi

To compute the denominator, convert to polar coordinates, setting


\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}\implies\mathrm dA=\mathrm dx\,\mathrm dy=r\,\mathrm dr\,\mathrm d\theta

Then


\displaystyle\iint_D\sigma(x,y)\,\mathrm dA=\int_(\theta=0)^(\theta=2\pi)\int_(r=0)^(r=2)(r\cos\theta+r\sin\theta+r^2)r\,\mathrm dr\,\mathrm d\theta

=\displaystyle\int_(\theta=0)^(2\pi)\left(4+\frac83(\cos\theta+\sin\theta)\right)\,\mathrm d\theta=8\pi

So the average value of
\sigma(x,y) over the disk is
(8\pi)/(4\pi)=2.
User Marla
by
8.5k points