206k views
3 votes
What is the perimeter of a polygon with vertices at

(−1, 3) , ​ (−1, 6) ​, (2, 10) , ​ (5, 6) ​​, and ​​ ​ (5, 3) ​?

Enter your answer in the box. Do not round any side lengths.​

2 Answers

2 votes
(-6,6) to (2,10) and (2,10) to (5,6) = square root of 3 squared plus 4 squared = 5 3 plus 5 plus 5 plus 3 plus 6 = 22
User Pixielex
by
8.6k points
2 votes

we know that

the perimeter of a polygon is the sum of the length sides

in this problem we have five vertices

so

the polygon has five sides

Let


A(-1,3)\\B(-1,6)\\C(2,10)\\D(5,6)\\E(5,3)

the perimeter is equal to


P=AB+BC+CD+DE+AE

The formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

Step 1

Find the distance AB


A(-1,3)\\B(-1,6)

substitute the values in the formula


d=\sqrt{(6-3)^(2)+(-1+1)^(2)}


d=\sqrt{(3)^(2)+(0)^(2)}


dAB=3\ units

Step 2

Find the distance BC


B(-1,6)\\C(2,10)

substitute the values in the formula


d=\sqrt{(10-6)^(2)+(2+1)^(2)}


d=\sqrt{(4)^(2)+(3)^(2)}


dBC=5\ units

Step 3

Find the distance CD


C(2,10)\\D(5,6)

substitute the values in the formula


d=\sqrt{(6-10)^(2)+(5-2)^(2)}


d=\sqrt{(-4)^(2)+(3)^(2)}


dCD=5\ units

Step 4

Find the distance DE


D(5,6)\\E(5,3)

substitute the values in the formula


d=\sqrt{(3-6)^(2)+(5-5)^(2)}


d=\sqrt{(-3)^(2)+(0)^(2)}


dDE=3\ units

Step 5

Find the distance AE


A(-1,3)\\E(5,3)

substitute the values in the formula


d=\sqrt{(3-3)^(2)+(5+1)^(2)}


d=\sqrt{(0)^(2)+(6)^(2)}


dAE=6\ units

Step 6

Find the perimeter

the perimeter is equal to


P=AB+BC+CD+DE+AE

substitute the values


P=3+5+5+3+6=22\ units

therefore

the answer is

the perimeter of the polygon is
22\ units

User Bassam Gamal
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.