194k views
0 votes
Which is the correct simplified form of the expression x^1/2y^-1/3/x^1/4y^1/2

Which is the correct simplified form of the expression x^1/2y^-1/3/x^1/4y^1/2-example-1
User Jedt
by
7.5k points

2 Answers

2 votes

\bf \left.\qquad \qquad \right.\textit{negative exponents}\\\\ a^{-{ n}} \implies \cfrac{1}{a^( n)} \qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \qquad \qquad a^{{{ n}}}\implies \cfrac{1}{a^{-{{ n}}}}\\\\ -------------------------------\\\\


\bf \cfrac{x^{(1)/(2)}y^{-(1)/(3)}}{x^{(1)/(4)}y^{(1)/(2)}}\implies \cfrac{x^{(1)/(2)}x^{-(1)/(4)}}{y^{(1)/(2)}y^{(1)/(3)}}\implies \cfrac{x^{(1)/(2)-(1)/(4)}}{y^{(1)/(2)+(1)/(3)}}\implies \cfrac{x^{(2-1)/(4)}}{y^{(3+2)/(6)}}\implies \cfrac{x^{(1)/(4)}}{y^{(5)/(6)}}
User Frapontillo
by
7.1k points
4 votes

Answer:

(A)
\frac{x^{(1)/(4)}}{y^{(5)/(6)}}

Explanation:

The given expression is:


\frac{x^{(1)/(2)}y^{(-1)/(3)}}{x^{(1)/(4)}y^{(1)/(2)}}

Upon solving the given expression, we get

=
{x^{(1)/(2)-(1)/(4)}{\cdot}}{y^{(-1)/(3)-(1)/(2)}} (using the property of exponents and powers that if base is same then the powers gets added.)

=
x^{(1)/(4)}{\cdot}y^{(-5)/(6)}

=
\frac{x^{(1)/(4)}}{y^{(5)/(6)}}

which is the required simplified form of the given equation.

Hence, option A is correct.

User Krjampani
by
8.1k points