223k views
3 votes
How does one integrate the following:


\int\limits^a_b \int\limits^a_b { (x)/((4+xy)^(2) ) } \, dy \, dx

you can switch the bounds however you want (integrate with respect to x before y). I would like to know the best way to handle this problem.

User Pall Arpad
by
9.2k points

1 Answer

4 votes
Consider substituting
u=4+xy, so that
\mathrm du=x\,\mathrm dy. Then


\displaystyle\int_(x=a)^(x=b)\int_(y=a)^(y=b)\frac x{(4+xy)^2}\,\mathrm dy\,\mathrm dx=\int_(x=a)^(x=b)\int_(u=4+ax)^(u=4+bx)\frac1{u^2}\,\mathrm du\,\mathrm dx

=\displaystyle\int_(x=a)^(x=b)\left(-\frac1u\right)\bigg|_(u=4+ax)^(u=4+bx)\,\mathrm dx

=\displaystyle\int_(x=a)^(x=b)\left(\frac1{4+ax}-\frac1{4+bx}\right)\,\mathrm dx

Then by similar substitutions, you can easily find that you end up with


\frac1a\ln|4+ax|-\frac1b\ln|4+bx|\bigg|_(x=a)^(x=b)

=\frac1a\ln|4+ab|-\frac1b\ln|4+b^2|-\frac1a\ln|4+a^2|+\frac1b\ln|4+ab|

=\frac1a\ln\left|(4+ab)/(4+a^2)\right|+\frac1b\ln\left|(4+ab)/(4+b^2)\right|

Of course, this all assumes that the integrand is continuous over the domain of integration, which would require that
a,b are chosen such that
xy\\eq-4 for any
(x,y)\in[a,b]^2. If in particular
ab>-4, then we can write


=\frac1a\ln(4+ab)/(4+a^2)+\frac1b\ln(4+ab)/(4+b^2)

and you can combine the logarithms if you like as


=\ln\sqrt[a]{(4+ab)/(4+a^2)}+\ln\sqrt[b]{(4+ab)/(4+b^2)}

=\ln\left(\sqrt[a]{(4+ab)/(4+a^2)}\sqrt[b]{(4+ab)/(4+b^2)}\right)
User Omid Nazifi
by
9.1k points