Answer:
c=6 and d=2 makes the equation true
Explanation:
![\sqrt[3]{162x^cy^5} = 3x^2y(\sqrt[3]{6y^d})](https://img.qammunity.org/2018/formulas/mathematics/high-school/z73d6e1h4ztqo0kokgpdg1u6glkad3w800.png)
plug in c=2 and check
![\sqrt[3]{162x^2y^5}](https://img.qammunity.org/2018/formulas/mathematics/high-school/1yccm21zype2ot9mn5gnl7yt81shx2ubyi.png)
We cannot simplify cuberoot (x^2)
So c=2 does not works
Lets try with c=6 and d=2
![\sqrt[3]{162x^6y^5}](https://img.qammunity.org/2018/formulas/mathematics/high-school/q6jmd14o0sruz126y6t3l57fli94nkj58a.png)
Cuberoot(x^6) = x^2
cuberoot (y^5)= ycuberoot (y^2)
![\sqrt[3]{162x^6y^5} = 3x^2y(\sqrt[3]{6y^2})](https://img.qammunity.org/2018/formulas/mathematics/high-school/9isahvxled74n98l349mn8hj5px95qturj.png)
So c=6 and d=2 makes the equation true