246,175 views
27 votes
27 votes
(a) The arrows below show that the coordinates on the left aremapped to the coordinates on the right. Fill in the blanks togive the coordinates after the reflection. Original coordinates -> final coordinates D (-3, 8) -> E (2, 5) ->F(-4,-1) ->(b) Choose the general rule below that describes the reflectiormapping DEF to DEF

(a) The arrows below show that the coordinates on the left aremapped to the coordinates-example-1
User Andrew Allison
by
3.0k points

1 Answer

5 votes
5 votes

Answer:

a)


\begin{gathered} \text{Original coordinates}\rightarrow\text{ Final coordinates} \\ D(-3,8)\rightarrow D^(\prime)(8,-3) \\ E(2,5)\rightarrow E^(\prime)(5,2) \\ F(-4,-1)\rightarrow F^(\prime)(-1,-4) \end{gathered}

b)


(x,y)\rightarrow(y,x)

Step-by-step explanation:

a)

The coordinates of the image on the graph are;


\begin{gathered} \text{Original coordinates}\rightarrow\text{ Final coordinates} \\ D(-3,8)\rightarrow D^(\prime)(8,-3) \\ E(2,5)\rightarrow E^(\prime)(5,2) \\ F(-4,-1)\rightarrow F^(\prime)(-1,-4) \end{gathered}

b)

From the solution in a above, we can derive the general rule of the reflection from triangle DEF to D'E'F';

From the solution in a above, the values of the coordinates of x and y were interchanged.

x to y and y to x to give the image.

So, we can write the general rule as;


(x,y)\rightarrow(y,x)

User Imnk
by
2.7k points