100k views
3 votes
On a town map, each unit of the coordinate plane represents 1 mile. Three branches of a bank are located at A(−3, 1), B(4, 3), and C(2, −1). A bank employee drives from Branch A to Branch B and then drives halfway to Branch C before getting stuck in traffic. What is the minimum total distance the employee may have driven before getting stuck in traffic? Round to the nearest tenth of a mile if necessary.

User Tom Lehman
by
8.0k points

1 Answer

1 vote
distance formula : sqrt ((x2 - x1)^2 + (y2 - y1)^2)
(-3,1)...x1 = -3 and y1 = 1
(4,3)...x2 = 4 and y2 = 3
now we sub
d = sqrt ((4 - (-3)^2 + (3 - 1)^2)
d = sqrt ((4 + 3)^2 + (2^2))
d = sqrt (7^2 + 2^2)
d = sqrt (49 + 4)
d = sqrt 53
d = 7.28 ...so its 7.28 miles from A to B

d = sqrt ((x2 - x1)^2 + (y2 - y1)^2)
(4,3)...x1 = 4 and y1 = 3
(2,-1)...x2 = 2 and y2 = -1
now we sub
d = sqrt ((2 - 4)^2 + (-1 - 3)^2)
d = sqrt (-2^2) + (-4^2)
d = sqrt (4 + 16)
d = sqrt 20
d = 4.47....but the employee only drives halfway....so this trip was 4.47/2 = 2.235

so the minimum total distance is : 7.28 + 2.235 = 9.515 rounds to 9.5 miles


User Daniel Morris
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.