164k views
2 votes
Which of the following functions are homomorphisms?

User Femseks
by
8.2k points

1 Answer

2 votes
Part A:

Given
f:Z \rightarrow Z, defined by
f(x)=-x


f(x+y)=-(x+y)=-x-y \\ \\ f(x)+f(y)=-x+(-y)=-x-y

but


f(xy)=-xy \\ \\ f(x)\cdot f(y)=-x\cdot-y=xy

Since, f(xy) ≠ f(x)f(y)

Therefore, the function is not a homomorphism.



Part B:

Given
f:Z_2 \rightarrow Z_2, defined by
f(x)=-x

Note that in
Z_2, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular
f(x)=x


f(x+y)=x+y \\ \\ f(x)+f(y)=x+y

and


f(xy)=xy \\ \\ f(x)\cdot f(y)=xy

Therefore, the function is a homomorphism.



Part C:

Given
g:Q\rightarrow Q, defined by
g(x)= (1)/(x^2+1)


g(x+y)= (1)/((x+y)^2+1) = (1)/(x^2+2xy+y^2+1) \\ \\ g(x)+g(y)= (1)/(x^2+1) + (1)/(y^2+1) = (y^2+1+x^2+1)/((x^2+1)(y^2+1)) = (x^2+y^2+2)/(x^2y^2+x^2+y^2+1)

Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.



Part D:

Given
h:R\rightarrow M(R), defined by
h(a)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)


h(a+b)= \left(\begin{array}{cc}-(a+b)&0\\a+b&0\end{array}\right)= \left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right) \\ \\ h(a)+h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)+ \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)=\left(\begin{array}{cc}-a-b&0\\a+b&0\end{array}\right)

but


h(ab)= \left(\begin{array}{cc}-ab&0\\ab&0\end{array}\right) \\ \\ h(a)\cdot h(b)= \left(\begin{array}{cc}-a&0\\a&0\end{array}\right)\cdot \left(\begin{array}{cc}-b&0\\b&0\end{array}\right)= \left(\begin{array}{cc}ab&0\\-ab&0\end{array}\right)

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.



Part E:

Given
f:Z_(12)\rightarrow Z_4, defined by
\left([x_(12)]\right)=[x_4], where
[u_n] denotes the lass of the integer
u in
Z_n.

Then, for any
[a_(12)],[b_(12)]\in Z_(12), we have


f\left([a_(12)]+[b_(12)]\right)=f\left([a+b]_(12)\right) \\ \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_(12)\right)+f\left([b]_(12)\right)

and


f\left([a_(12)][b_(12)]\right)=f\left([ab]_(12)\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_(12)\right)f\left([b]_(12)\right)

Therefore, the function is a homomorphism.
User Mark Slater
by
8.7k points