15.6k views
3 votes
Please helppp

(750/512)^1/3
what is equivilant to this??

User Picchiolu
by
9.1k points

2 Answers

3 votes

\bf a^{\frac{{ n}}{{ m}}} \implies \sqrt[{ m}]{a^( n)} \qquad \qquad \sqrt[{ m}]{a^( n)}\implies a^{\frac{{ n}}{{ m}}}\\\\ -------------------------------


\bf \left( \cfrac{750}{512} \right)^{(1)/(3)}\implies \cfrac{750^{(1)/(3)}}{512^{(1)/(3)}}\implies \cfrac{\sqrt[3]{750^1}}{\sqrt[3]{512^1}}\quad \begin{cases} 750=2\cdot 3\cdot 5\cdot 5\cdot 5\\ \qquad 2\cdot 3\cdot 5^3\\ \qquad 6\cdot 5^3\\ 512=8\cdot 8\cdot 8\\ \qquad 8^3 \end{cases} \\\\\\ \cfrac{\sqrt[3]{750}}{\sqrt[3]{512}}\implies \cfrac{\sqrt[3]{6\cdot 5^3}}{\sqrt[3]{8^3}}\implies \cfrac{5\sqrt[3]{6}}{8}
User Khai Vu
by
8.2k points
3 votes

Answer:


\frac{5\sqrt[3]{6}}{8}

Explanation:

We have been given an exponential number. We are supposed to simplify our given number.


((750)/(512))^{(1)/(3)

Using fractional exponent rule
x^(m)/(n)=\sqrt[n]{x^m}, w ecan write our given number as:


((750)/(512))^{(1)/(3)}=\sqrt[3]{((750)/(512))^1}


((750)/(512))^{(1)/(3)}=\sqrt[3]{(750)/(512)}

We can rewrite 512 as
8^3 and 750 as 125*6.


((750)/(512))^{(1)/(3)}=\sqrt[3]{(125*6)/(8^3)}

We can rewrite 125 as
5^3


((750)/(512))^{(1)/(3)}=\sqrt[3]{(5^3*6)/(8^3)}

Using radical rule
\sqrt[n]{a^n}=a, we will get:


((750)/(512))^{(1)/(3)}=\frac{5\sqrt[3]{6}}{8}

Therefore,
\frac{5\sqrt[3]{6}}{8} is equivalent to our given number.

User Badmiral
by
8.8k points