96.3k views
4 votes
Let c be the curve of intersection of the parabolic cylinder x2 = 2y, and the surface 3z = xy. find the exact length of c from the origin to the point 2, 2, 4 3 . step 1

User J Atkin
by
8.9k points

1 Answer

3 votes
Parameterize the curve
C by
\mathbf r(t)=\left\langle t,\frac{t^2}2,\frac{t^3}6\right\rangle (essentially replacing
x=t and finding equivalent expressions for
y,z in terms of
t.

The length of
C is given by the line integral


\displaystyle\int_C\mathrm dS=\int_(t=0)^(t=2)\|\mathbf r'(t)\|\,\mathrm dt

=\displaystyle\int_0^2\left\|\left\langle1,t,\frac{t^2}2\right\rangle\right\|\,\mathrm dt

=\displaystyle\int_0^2\sqrt{1+t^2+\frac{t^4}4}\,\mathrm dt

=\displaystyle\frac12\int_0^2√(4+4t^2+t^4)\,\mathrm dt

=\displaystyle\frac12\int_0^2√((t^2+2)^2)\,\mathrm dt

=\displaystyle\frac12\int_0^2(t^2+2)\,\mathrm dt

=\frac12\left(\frac{t^3}3+2t\right)\bigg|_(t=0)^(t=2)

=\frac12\left(\frac83+4\right)

=\frac{10}3
User Pintu Kawar
by
8.0k points