306,574 views
43 votes
43 votes
identiality StatAdapt Web SerSimplify.6V x3 + 8xVxSTEP 1: Write x3 as the product of the square root of a perfect square and Vx.ovJ VX + 8xVX + 8xVxSTEP 2: Simplify x26X + 8xVxSTEP 3: Use the Distributive Property.(6x +veSTEP 4: AddAdditional MaterialseBook

User Tim Malone
by
2.5k points

1 Answer

28 votes
28 votes

Let's follow the steps given.

First it asks to rewrite the square root. So:


\sqrt[]{x^3}=\sqrt[]{x^2\cdot x}=\sqrt[]{x^2}\cdot\sqrt[]{x}

Thus:


6\sqrt[]{x^3}+8x\sqrt[]{x}=6\sqrt[]{x^2}\sqrt[]{x}+8x\sqrt[]{x}

Then, it asks to simplify the square root:


\sqrt[]{x^2}=x

Thus:


6\sqrt[]{x^2}\sqrt[]{x}+8x\sqrt[]{x}=6x\sqrt[]{x}+8x\sqrt[]{x}

Now, we use the distributive property backwards:


6x\sqrt[]{x}+8x\sqrt[]{x}=(6x+8x)\sqrt[]{x}

Finally, we add what is inside of the parenthesis:


(6x+8x)\sqrt[]{x}=14x\sqrt[]{x}

User Ashario
by
2.7k points