87.7k views
5 votes
Given point M(0,6),N (5,3), Rc (-7,-5) nd  S(-2,-2) determine if MN is congruent to Rs

1 Answer

4 votes

\bf \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) M&({{ 0}}\quad ,&{{ 6}})\quad % (c,d) N&({{ 5}}\quad ,&{{ 3}}) \end{array}\qquad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ MN=√((5-0)^2+(3-6)^2)\implies MN=√(5^2+(-3)^2) \\\\\\ MN=√(25+9)\implies \boxed{MN=√(34)}\\\\


\bf -------------------------------\\\\ \textit{distance between 2 points}\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) R&({{-7}}\quad ,&{{ -5}})\quad % (c,d) S&({{ -2}}\quad ,&{{ -2}}) \end{array}\quad % distance value d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2} \\\\\\ RS=√([-2-(-7)]^2+[-2-(-5)]^2) \\\\\\ RS=√((-2+7)^2+(-2+5)^2)\implies RS=√(5^2+3^2) \\\\\\ RS=√(25+9)\implies \boxed{RS=√(34)}

well, are they?
User Jack Kawell
by
8.4k points