197k views
2 votes
Find the minimum and maximum of f(x,y,z)=x^2+y^2+z^2 subject to two constraints, x+2y+z=4 and x-y=8.

1 Answer

5 votes
The Lagrangian for this function and the given constraints is


L(x,y,z,\lambda_1,\lambda_2)=x^2+y^2+z^2+\lambda_1(x+2y+z-4)+\lambda_2(x-y-8)

which has partial derivatives (set equal to 0) satisfying


\begin{cases}L_x=2x+\lambda_1+\lambda_2=0\\L_y=2y+2\lambda_1-\lambda_2=0\\L_z=2z+\lambda_1=0\\L_(\lambda_1)=x+2y+z-4=0\\L_(\lambda_2)=x-y-8=0\end{cases}

This is a fairly standard linear system. Solving yields Lagrange multipliers of
\lambda_1=-(32)/(11) and
\lambda_2=-(104)/(11), and at the same time we find only one critical point at
(x,y,z)=\left((68)/(11),-(20)/(11),(16)/(11)\right).

Check the Hessian for
f(x,y,z), given by


\mathbf H(x,y,z)=\begin{bmatrix}f_(xx)&f_(xy)&f_(xz)\\f_(yx)&f_(yy)&f_(yz)\\f_(zx)&f_(zy)&f_(zz)\end{bmatrix}=\begin{bmatrix}=\begin{bmatrix}2&0&0\\0&2&0\\0&0&2\end{bmatrix}


\mathbf H is positive definite, since
\mathbf v^\top\mathbf{Hv}>0 for any vector
\mathbf v=\begin{bmatrix}x&y&z\end{bmatrix}^\top, which means
f(x,y,z)=x^2+y^2+z^2 attains a minimum value of
(480)/(11) at
\left((68)/(11),-(20)/(11),(16)/(11)\right). There is no maximum over the given constraints.
User Bousof
by
8.6k points

No related questions found