355,963 views
29 votes
29 votes
Gravitational Force of Objects at Different Distances From Earth(round to nearest 100ths place)Object in SpaceAltitudeabove SeaLevel(meters)Distance fromCenter ofEarth (meters)Mass ofObject/Person(kilogram)Mass of Earth(kilogram)GravitationalForceExperienced(Newton)Orbit or Fall toEarth?Person at SeaLevel06,377,500755.97 x 1024N/APerson at Peakof MountEverest8,8486,386,348755.97 x 1024N/ATiangong-1Satellite208,0006,585,5008,5065.97 x 1024Fall to EarthSpaceX StarlinkSatellite538,7006,916,200260,0005.97 x 1024OrbitGPS Satellites20,189,00026,566,5001,6305.97 x 1024OrbitGOES WeatherSatellite35,786,20042,163,7002,8575.97 x 1024OrbitDirecTV35.793.50042.171.00035735.97 x 1024Orbit

User Justin Paulson
by
3.0k points

1 Answer

17 votes
17 votes

Given the formula:


F_g=(Gm_1m_2)/(d^2)

Where:

G = 6.67 x 10^-11

m1 = Mass of object per person

m2 - mass of earth

d = distance between objects

Let's solve for the gravitational forces.

We have:

1) Person at sea level:


F_g=((6.67\ast10^(-11))\ast75\ast5.97\ast10^(24))/(6377500^2)=734.28N

2) Person at peak of mount everest:


F_g=((6.67\ast10^(-11))\ast75\ast5.97\ast10^(24))/((6386348-8848)^2)=734.28N

3) Tiangong-1 satellite:


F_g=((6.67\ast10^(-11))\ast8506\ast5.97\ast10^(24))/((6585500-208000)^2)=83276.91N

4) Space-X starlink satellite:


F_g=((6.67\ast10^(-11))\ast260000\ast5.97\ast10^(24))/((6916200-538700)^2)=2545496.94N

5) GPS satellites:


F_g=((6.67\ast10^(-11))\ast1630\ast5.97\ast10^(24))/((26566500-20189000)^2)=15958.31N

6) GOES weather satellite:


F_g=((6.67\ast10^(-11))\ast2857\ast5.97\ast10^(24))/((42163700-35786200)^2)=27971.10N

7) DirecTV satellite:


F_g=((6.67\ast10^(-11))\ast3573\ast5.97\ast10^(24))/((42171000-35793500)^2)=34981.00N

8) SiriusXM:


F_g=((6.67\ast10^(-11))\ast7000\ast5.97\ast10^(24))/((30784500-24407000)^2)=68532.61N

9) Moon:


F_g=((6.67\ast10^(-11))\ast7.35\cdot10^(22)\ast5.97\ast10^(24))/((384399000-378021500)^2)=7.20\ast10^(23)

Part 2:

A satellite stay in orbit due to force of gravity and the statellites momentum from its launch into space.

A statellite may fall back to earth due to a drag that causes the staellites orbit go decay. This drag happens when the staellite run into traces of the earth's atmosphere.

User Richard Housham
by
3.7k points