138k views
1 vote
Which expression is a perfect cube?

A. -8x21y8

B. -64x64y64

C. -125x9y20

D. -216x9y18

1 Answer

2 votes
Finding the cube root of each expression

Expression A:


\sqrt[3]{-8x^(21)y^(8)}

\sqrt[3]{-8}
\sqrt[3]{x^(21)[tex] \sqrt[3]{y^8}} [/tex]

-2x^ (21)/(3) y^ (8)/(3)

-2 x^7 y^ (8)/(3)

the term
y^ (8)/(3) is not a perfect cube, therefore expression A is not a perfect cube.

--------------------------------------------------------------------------------------------------------------

Expression B

\sqrt[3]{-64x^(64)y^(64)}

\sqrt[3]{-64} \sqrt[3]{x^(64)} \sqrt[3]{y^(64)}

-4 x^ (64)/(3) y^ (64)/(3)

The term
x^ (64)/(3) and
y^ (64)/(3) are not perfect cube because 64/3 doesn't give whole number
----------------------------------------------------------------------------------------------------------------

Expression C


\sqrt[3] {-125x^9y^(20)}

\sqrt[3]{-125} \sqrt[3]{x^9} \sqrt[3] {y^(20)}

-5 (x^ (9)/(3)) (y^ (20)/(3))

-5 (x^3) (y^ \frac{20} {3})

The term
y^ (20)/(3) are not perfect cube because 20/3 doesn't give whole number
---------------------------------------------------------------------------------------------------------------

Expression D


\sqrt[3]{ -216 x^(9) y^(18) }

\sqrt[3]{-216} \sqrt[3]{x^9} \sqrt[3]{y^(18)}

-6 ( x^ \frac{9} {3} ) ( y^ \frac{18} {3} )

-6 (x^3) (y^6)

All terms are perfect cubes

ANSWER: OPTION D

User Rejj
by
7.2k points