68.8k views
2 votes
The height of one square pyramid is 12 m. A similar pyramid has a height of 6 m. The volume of the larger pyramid is 400 m3. Determine each of the following, showing all your work and reasoning.

Scale factor of the smaller pyramid to the larger pyramid in simplest form

Ratio of the areas of the bases of the smaller pyramid to the larger pyramid

Ratio of the volume of the smaller pyramid to the larger

Volume of the smaller pyramid

1 Answer

2 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\


\bf \cfrac{smaller}{larger}\qquad \cfrac{\stackrel{height}{6}}{\stackrel{height}{12}}\implies \cfrac{1}{2}\impliedby \textit{scale factor of the pyramids}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{h}{h}=\cfrac{√(base)}{√(base)}\implies \cfrac{1}{2}=\sqrt{\cfrac{base}{base}}\implies \left( \cfrac{1}{2} \right)^2=\cfrac{base}{base} \\\\\\ \cfrac{1^2}{2^2}=\cfrac{base}{base}\implies \cfrac{1}{4}=\cfrac{base}{base}\\\\ -------------------------------\\\\


\bf \cfrac{smaller}{larger}\qquad \cfrac{h}{h}=\cfrac{\sqrt[3]{volume}}{\sqrt[3]{volume}}\implies \cfrac{1}{2}=\sqrt[3]{\cfrac{volume}{volume}} \\\\\\ \left( \cfrac{1}{2} \right)^3=\cfrac{volume}{volume} \implies \cfrac{1^3}{2^3}=\cfrac{volume}{volume}\implies \cfrac{1}{8}=\cfrac{volume}{volume}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{1}{8}=\cfrac{\stackrel{volume}{v}}{\stackrel{volume}{400}}\implies \cfrac{1\cdot 400}{8}=v
User Gallen
by
8.2k points