53.8k views
0 votes
Find the derivative of y = sin2 (4x) cos (3x) with respect to x.

A. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x)
B. 8 sin (4x) cos (3x) - 3 sin2 (4x) sin (3x)
C. 8 sin (4x) cos (4x) cos (3x) - 3 sin2 (4x) sin (3x) cos (3x)
D. 8 cos (4x) cos (3x) - 3 sin2 (4x) sin (3x)

User Kang Su
by
7.8k points

1 Answer

6 votes
expanded:
y = sin(4x)*sin(4x)*cos(3x)
need to use the product rule and chain rule

look at individual derivatives, use chain rule
d/dx sin(4x) = 4cos(4x)
d/dx cos(3x) = -3sin(3x)

put it together using product rule
dy/dx = 4cos(4x)*sin(4x)*cos(3x) + 4cos(4x)*sin(4x)*cos(3x) - 3sin(3x)*sin(4x)*sin(4x)

simplify

dy/dx = 8cos(4x)*sin(4x)*cos(3x) - 3sin(3x)*sin2(4x)

answer is A.
User Akshay Rawat
by
8.3k points

Related questions

asked Sep 17, 2024 41.4k views
Ben Aubin asked Sep 17, 2024
by Ben Aubin
8.1k points
1 answer
4 votes
41.4k views
asked Sep 8, 2019 98.7k views
Drew Rush asked Sep 8, 2019
by Drew Rush
9.0k points
1 answer
5 votes
98.7k views