186k views
0 votes
Simplify the following.

Simplify the following.-example-1
User Munna Babu
by
8.5k points

1 Answer

2 votes

\bf cos({{ \alpha}})-cos({{ \beta}})=-2sin\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)sin\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right) \\\\\\ sin({{ \alpha}})+sin({{ \beta}})=2sin\left(\cfrac{{{ \alpha}}+{{ \beta}}}{2}\right)cos\left(\cfrac{{{ \alpha}}-{{ \beta}}}{2}\right) \\\\\\ \textit{also recall the symmetry identity of }sin(-\theta )=-sin(\theta )\\\\ -------------------------------\\\\


\bf \cfrac{cos(3x)-cos(7x)}{sin(7x)+sin(3x)}\implies \cfrac{-2sin\left( (3x+7x)/(2) \right)sin\left( (3x-7x)/(2) \right)}{2sin\left( (7x+3x)/(2) \right)cos\left( (7x-3x)/(2) \right)} \\\\\\ \cfrac{-2sin\left( (10x)/(2) \right)sin\left( (-4x)/(2) \right)}{2sin\left( (10x)/(2) \right)cos\left( (4x)/(2) \right)}\implies \cfrac{-\underline{2sin\left( 5x \right)} sin\left( -2x \right)}{\underline{2sin\left( 5x \right)} cos\left( 2x \right)}


\bf \cfrac{-sin(-2x)}{cos(2x)}\implies \cfrac{-[-sin(2x)]}{cos(2x)}\implies \cfrac{sin(2x)}{cos(2x)}\implies tan(2x)
User James Clarke
by
8.2k points

No related questions found