103k views
5 votes
Find the dimensions of a rectangle whose area is 285 cm2 and whose perimeter is 68 cm.

1 Answer

5 votes

\bf \textit{area of a rectangle}\\\\ A=lw\quad \begin{cases} l=length\\ w=width\\ -----\\ A=285 \end{cases}\implies 285=lw\implies \boxed{\cfrac{285}{w}=l} \\\\\\ \textit{perimeter of a rectangle}\\\\ P=2(l+w)\quad \begin{cases} l=(285)/(w)\\\\ P=68 \end{cases}\implies 68=2\left( \boxed{\cfrac{285}{w}}+w \right) \\\\\\ \cfrac{68}{2}=\cfrac{285}{w}+w\implies 34=\cfrac{285+w^2}{w}\implies 34w=285+w^2


\bf 0=w^2-34w+285\implies 0=(w-19)(w-15)\implies w= \begin{cases} 19\\ 15 \end{cases} \\\\\\ \stackrel{lenght}{l}= \begin{cases} (285)/(19)\implies &15\\\\ (285)/(15)\implies &19 \end{cases}
User Atwalsh
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories