385,091 views
18 votes
18 votes
Reflect AABC over the x-axis, then translate left 4 units

Reflect AABC over the x-axis, then translate left 4 units-example-1
User MaGu
by
2.4k points

1 Answer

25 votes
25 votes

To reflect triangle ABC over the x-axis simply means the image will form a mirror image of each other over the x axis. Reflection over the x axis simply implies we negate the value of y-coordinate but live the x-coordinate the same . Therefore reflecting this


\begin{gathered} A(1,1) \\ B(1,5) \\ C(5,2) \end{gathered}

over x -axis will be


\begin{gathered} A^(\prime)(1,-1) \\ B^(\prime)(1,-5) \\ C^(\prime)(5,-2) \end{gathered}

Then translating left 4 units will be


\begin{gathered} A^(\prime)(-3,-1) \\ B^(\prime)(-3,-5) \\ C^(\prime)(1,-2) \end{gathered}

The new point on the graph will be

Reflect AABC over the x-axis, then translate left 4 units-example-1
User Larsschwegmann
by
3.0k points