233,802 views
1 vote
1 vote
find the following write your answers in trigonometry form give exact values in your answers not decimal approximations

find the following write your answers in trigonometry form give exact values in your-example-1
User Freddiefujiwara
by
2.2k points

1 Answer

11 votes
11 votes

Given:

z1 = 6(cos80 + isin80)

z2 = 8(cos140 + isin140)

Let's solve for the following:

(a) z1/z2

To solve for z1/z2, we have:


\begin{gathered} (z_1)/(z_2)=(6(\cos 80+i\sin 80))/(8(\cos 140+i\sin 140)) \\ \\ (z_1)/(z_2)=(3(\cos 80+i\sin 80))/(4(\cos 140+i\sin 140)) \end{gathered}

Solving further:


(z_1)/(z_2)=(0.521+2.954i)/(-3.064+2.571i)

Multiply the denominator and numerator by the conjugate:


\begin{gathered} (0.521+2.954i)/(-3.064+2.571i)*(-3.064-2.571i)/(-3.064-2.571i) \\ \\ ((0.521+2.954i)(-3.064-2.571i))/((-3.064+2.571i)(-3.064-2.571i)) \\ \\ =(6-10.392i)/(16) \\ \\ =(1)/(16)\ast(6-10.392i)/(1) \end{gathered}

Let's write in trigonometric form:


\begin{gathered} 0.0625(6-10.392i) \\ \\ 0.0625(6)+0.0625(-10.392i) \\ \\ 0.375-0.649i \\ \\ \lvert z\rvert=\sqrt[]{(-0.649)^2+(}0.375)^2 \\ \\ \lvert z\rvert=\sqrt[]{0.562}=0.749 \\ \\ \tan ^(-1)((-0.649)/(0.375))=-60^o \end{gathered}

Therefore, the answer in trigonometric form is:


0.749(\cos (-60^0)+i\sin (-60))

Part b.


z_1z_2=(6(\text{cos}80+i\sin 80))*(8(\cos 140+i\sin 140))

Thus, we have:


\begin{gathered} z_1z_2=\mleft(1.042+5.909i\mright)*(-6.128+5.142i) \\ \\ \end{gathered}

Apply the FOIL method:


1.042(-6.128+5.142i)+5.909i(-6.128+5.142i)

Apply distributive property:


undefined

User Mark Madej
by
3.3k points