36.0k views
2 votes
There are six different sixth roots of 64. That is, there are six complex numbers that solve x^6=64

Please help

User Ernirulez
by
8.3k points

1 Answer

0 votes
There are two possible solutions:

1)
When we know that:


\sqrt[n]{z}=\sqrt[n]\Big(\cos(\phi+2k\pi)/(n)+i\sin(\phi+2k\pi)/(n)\Big)\qquad\text{for}\quad k=0,1,\ldots,n-1

when
z=|z|(\cos\phi+i\sin\phi)

then:


x^6=64\quad|\sqrt[6]{(\ldots)}\\\\x=\sqrt[6]{64}

For
x=64 we have:


64=|64|(\cos0+i\sin0)\quad\Rightarrow\quad \phi=0

and:


\sqrt[6]{64}=\sqrt[6]{64}\Big(\cos(0+2k\pi)/(6)+i\sin(0+2k\pi)/(6)\Big)\qquad\text{for}\quad k=0,1,\ldots,5\\\\\\ \sqrt[6]{64}=2\Big(\cos(k\pi)/(3)+i\sin(k\pi)/(3)\Big)\qquad\text{for}\quad k=0,1,\ldots,5

k = 0


2\Big(\cos(0)/(3)+i\sin(0)/(3)\Big)=2(1+0i)=2\cdot1=\boxed{2}

k = 1


2\Big(\cos(\pi)/(3)+i\sin(\pi)/(3)\Big)=2\Big((1)/(2)+i(√(3))/(2)\Big)=\boxed{1+i√(3)}

k = 2


2\Big(\cos(2\pi)/(3)+i\sin(2\pi)/(3)\Big)=2\Big(-(1)/(2)+i(√(3))/(2)\Big)=\boxed{-1+i√(3)}

k = 3


2\Big(\cos(3\pi)/(3)+i\sin(3\pi)/(3)\Big)=2\Big(\cos\pi+i\sin\pi\Big)=2(-1+0i)=\boxed{-2}

k = 4


2\Big(\cos(4\pi)/(3)+i\sin(4\pi)/(3)\Big)=2\Big(-(1)/(2)-i(√(3))/(2)\Big)=\boxed{-1-i√(3)}

k = 5


2\Big(\cos(5\pi)/(3)+i\sin(5\pi)/(3)\Big)=2\Big((1)/(2)-i(√(3))/(2)\Big)=\boxed{1-i√(3)}

So the answer is:


x=\{2,\,1+i√(3),\,-1+i√(3),\,-2,\,-1-i√(3),\,1-i√(3)\}

2)
We don't know method (1). If so, we could use following identities:


(1)\quad a^2-b^2=(a+b)(a-b)\\\\(2)\quad a^3-b^3=(a-b)(a^2+ab+b^2)\\\\(3)\quad a^3+b^3=(a+b)(a^2-ab+b^2)

There will be:


x^6=64\\\\x^6-64=0\\\\(x^3)^2-8^2=0 \qquad\text{from (1)}\\\\(x^3+8)(x^3-8)=0\\\\(x^3+2^3)(x^3-2^3)=0\qquad\text{from (2) and (3)}\\\\ (x+2)(x^2-2x+4)(x-2)(x^2+2x+4)=0\qquad(\star)

Now, we complete the square for:


x^2-2x+4=x^2-2x+1+3=(x^2-2x+1)+3=(x-1)^2+3=\\\\=(x-1)^2+(√(3))^2=(x-1)^2-(-1)(√(3))^2=(x-1)^2-i^2(√(3))^2=\\\\=(x-1)^2-(i√(3))^2=\text{from (1)}=\boxed{(x-1-i√(3))(x-1+i√(3))}

and for:


x^2+2x+4=x^2-2x+1+3=(x^2+2x+1)+3=(x+1)^2+3=\\\\=(x+1)^2+(√(3))^2=(x+1)^2-(-1)(√(3))^2=(x+1)^2-i^2(√(3))^2=\\\\=(x+1)^2-(i√(3))^2=\text{from (1)}=\boxed{(x+1-i√(3))(x+1+i√(3))}

When we return to
(\star):


(x+2)(x^2-2x+4)(x-2)(x^2+2x+4)=0\\\\(x+2)(x-1-i√(3))(x-1+i√(3))(x-2)(x+1-i√(3))(x+1+i√(3))=\\=0

And we have answer:


x=\{-2,\,1+i√(3),\,1-i√(3),\,2,\,-1+i√(3),\,-1-i√(3)\}
User CostelloNicho
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories