130,341 views
17 votes
17 votes
Use the property of logarithm to expand and simplify the expression ?

Use the property of logarithm to expand and simplify the expression ?-example-1
User Rtfminc
by
2.4k points

1 Answer

13 votes
13 votes

Simplify expression


\begin{gathered} \log _(12)\sqrt[3]{(12+x)/(144x)}= \\ =\log _(12)((12+x)/(144x))^{(1)/(3)}= \\ =(1)/(3)\log _(12)((12+x)/(144x))= \\ =(1)/(3)(\log _(12)(12+x)-\log _(12)(144x))= \\ =(1)/(3)(\log _(12)(12+x)-(\log _(12)(144)+\log _(12)(x)))= \\ =(1)/(3)(\log _(12)(12+x)-2+\log _(12)(x))= \\ =(1)/(3)\log _(12)(12+x)-(2)/(3)+(1)/(3)\log _(12)x \end{gathered}

So our final answer will be:


(1)/(3)\log _(12)(12+x)-(2)/(3)+(1)/(3)\log _(12)x

User Bholanath
by
2.8k points