191k views
2 votes
Given f(x) 3x-1/2 solve for f^-1(4)

User Tounaobun
by
8.1k points

1 Answer

5 votes
first off, just to remind you, to get the "inverse relation" of any expression, you first do a quick switcharoo on the variables, and then solve for "y", or whatever the dependent is. So let's do so.


\bf \stackrel{f(x)}{y}=3x-\cfrac{1}{2}\qquad inverse\implies \boxed{x}=3\boxed{y}-\cfrac{1}{2} \\\\\\ x+\cfrac{1}{2}=3y\implies \cfrac{x+(1)/(2)}{3}=y\implies \cfrac{x+(1)/(2)}{(3)/(1)}=y\implies \left( x+\cfrac{1}{2} \right)\cfrac{1}{3}=y \\\\\\ \cfrac{x}{3}+\cfrac{1}{6}=y\impliedby f^(-1)(x)\\\\ -------------------------------\\\\\cfrac{(4)}{3}+\cfrac{1}{6}=f^(-1)(4)\implies \cfrac{8+1}{6}=f^(-1)(4)\implies \cfrac{9}{6}=f^(-1)(4) \\\\\\ \cfrac{3}{2}=f^(-1)(4)
User Ananthan Unni
by
7.7k points